
 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..115599--116633 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.022 Page | 159

AAnn EEffffiicciieenntt CChheecckkppooiinnttiinngg PPrroottooccooll ffoorr MMoobbiillee
DDiissttrriibbuutteedd SSyysstteemmss

Raman Kumar, Parveen Kumar
Research Scholar, Deptt. of Computer Sci. & Engg., Mewar University, Chittorgarh, Rajesthan, INDIA

Deptt. of Computer Science & Engineering
rmn.kmr1@gmail.com, pk223475@gmail.com

Abstract: A mobile computing system consists of mobile and stationary nodes, connected to each
other by communication network. The system raises several constraints such as limited battery life,
mobility, disconnection of hosts and lack of stable storage. To reduce the lost of computational work
during recovery from the node failures periodic collection of a consistent snapshot of the system
(checkpoint) is required. This paper presents an efficient coordinated checkpoint protocol which is
non-blocking and not forces every node to take local checkpoint. We proposed that collected global
snapshot is consistent. Our protocol meet the low energy consumption, reduces storage overhead
having low communication and low band width constraints of mobile computing systems.
Keywords: Mobile Computing Systems, Coordinated checkpointing, Consistent Checkpoints,
Global Snapshot, Recovery.

I. INTRODUCTION
A mobile computing system is a distributed system where some
of the nodes are mobile computers (Mobile Hosts (MHs)) [9]. As
time passes mobile computers location gets change. To
communicate with MHs, mobile support stations (MSSs) are
added. An MSS communicate with other MSS by wired networks
and with MHs with wireless network. Each of saved state is
called snapshot (checkpoint). All the processes in the system take
their checkpoints periodically.

The checkpointing techniques do not require user interaction
and can be classified into following categories: (a) Uncoordinated
checkpointing (b) Coordinated checkpointing (c) Quasi-
Synchronous (d) Message – Login based checkpointing [14]. In
this paper we concentrate on coordinated checkpointing
technique which maintains a consistent snapshot of system all the
times. A consistent global snapshot indicates set of N local
snapshots (checkpoints) one from each process forming a
consistent system state which can be used to restart process
execution upon a failure. It is desirable to minimize the amount
of lost work by restoring the system to most recent consistent
global checkpoint. A good snapshot collection algorithm should
be Non-Blocking i.e. which does not force the nodes in the
system to stop their computations during snapshot collection. An
efficient algorithm keeps minimum effort required for collecting
a consistent snapshot to a minimum. The snapshot collection
algorithm by Chandy and Lamport forces every node to take its
local snapshots but the computation is allowed to continue while
the global snapshot is being collected [1]. In Koo and Toueg’s
algorithm all the nodes are not forced to take their local
snapshots [7]. However, the underlying computation is suspended
during snapshot collection. We propose a new coordinated
checkpoint protocol which is non- blocking and efficient that
forces a minimal set of nodes to take their snapshot and

underlying computation is not suspended during snapshot
collection.

II. RELATED WORK

In Chandy-Lamport algorithm [1] control messages are sent to all
the nodes for consistent global checkpoint. Hence message send
overhead is increased along all the channels of network.

Acharya-Badrinath algorithm [9] proposed an uncoordinated
checkpointing algorithm for mobile distributed system because
they found the limitations of high cost to receive request
messages along every channel in network and absence of local
checkpoint of MH during disconnect interval in coordinated
checkpoint algorithm.

In Koo-Toueg Algorithm [7] the underlying computation is
blocked. There is direct dependency approach is used while
global snapshot collection. Such algorithm is not suitable for
concurrent initiation.

In Venkatessan and Juang’s optimistic failure recovery algorithm
[15] no dependency information is send with the computation
messages. Hence while recovery process too many rollback
occurs.

In [3] Guohong Cao and Mukesh Singhal had proposed an
efficient algorithm that neither forces all the processes to take
checkpoints nor blocks the underlying computation during
checkpointing and which significantly reduces the number of
checkpoints. In this paper it is described that there does not exist
a nonblocking algorithm that forces only a minimum number of
processes to take checkpoints. Their algorithm requires minimum
number of processes to take tentative checkpoints and thus
minimizes the workload on stable storage server. Their algorithm
has three kinds of checkpoints: tentative, permanent and forced.
Tentative and permanent checkpoints are saved on stable storage.

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..115599--116633 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.022 Page | 160

Forced checkpoints do not need to be saved on stable storage.
They can be saved on any where even in the main memory .When
a process takes a tentative checkpoint; it forces all dependent
processes to take checkpoints. However a process taking a forced
checkpoint does not require its dependent processes to take
checkpoint. Thus taking a forced checkpoint avoids the cost of
transferring large amount of data to stable storage .

III. SYSTEM MODEL

A message passing system consists of N fixed number of nodes
that communicate each other only through messages[Fig. 1].

The messages generated by underlying distributed application
will be referred to as computation messages. Messages generated
by the nodes to advance checkpoints, handle failures and for
recovery will be referred to as system messages [Fig. 2]. In this
paper the horizontal lines extending towards right hand side
represent the execution of each process (MH) and arrows
between them represent the messages. Processes have access to a
stable storage device that survives failures. The number of
tolerated process failures may vary from 1 to N [14].

IV. PROBLEM FORMULATION
 Two main reasons behind the design of a checkpoint collection
algorithm are:

(1) Its efficiency: An efficient algorithm forces a minimum
number of nodes to take their local snapshots.

(2) Its Non-Blocking approach: A Non-Blocking algorithm does
not stop the computation at the participating nodes during
checkpoint collection.[2]

A. Propagation of minimal dependency information
The dependency is created by means of messages between

nodes. Node Pi maintains a Boolean vector Ri of n components.
At Pi, the vector initialized as follows:

 1 i = j
 Ri[j] =
 0 i � j

When a node Pi sends a message to Pj it then modifies vector Ri.
This informs Pj about the nodes that have affected Pi.

While processing a message M Pj extracts Boolean vector M.R
from the message and uses it to update Rj as follows: Rj[k] �
Rj[k] OR M.R[k], where 1 � k � n.

Following diagram shows the dependency information through
messages: Since P2 was dependent on P1 before sending M2 to
P3; P3 becomes transitively dependent on P1 on receiving M2
[Fig. 3].

The dependency information is used to minimize the effort
required to collect global checkpoint .But there should be
avoidance of useless checkpoint in global checkpoint collection.
The following figure describes : There are three processes P, Q
and R. Let Q initiates checkpoint request to processes P and R.
Let P and R take their local checkpoints. If R sends message M to
P before receiving checkpoint request then message M will
become an orphan message which creates a problem during
snapshot collection. To avoid such problem a concept of
checkpoint sequence number get arise. We call this ckpt_num in
our protocol.

Let us describe about the global recovery line by an example [Fig.
4]. The following diagram shows the vertical line G1 the global

P0

P1

P2

PN

Outside world

M1

M2

Fig. 1 Message Passing System

Wired network

MSS MSS

MSS MSS

Wireless cell Wireless cell

Wireless cell Wireless cell

MH

Fig. 2 Mobile Distributed System

P1

P2

P3

0
1
0

0
0
1

M1
1
1
0

M2
1
1
1

Fig.3 Propagation of dependency information via R[i] vector

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..115599--116633 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.022 Page | 161

checkpoint at the beginning of the computation. Let Process P2
initiates a new snapshot collection. Only P3 and P4 need to take
their local snapshot because they depends upon node P2 .But the
nodes P1 and P5 need not take their snapshot because they do not
have dependencies on to process P2. Where dotted line G2 shows
the global recovery line or current global checkpoint.

B. Managing Node Mobility and Disconnection Title
Let a Mobile Host MH be initially connected to MSS1.It
disconnects from MSS1. After a finite period of time it connects
with MSS2. In such disconnected period: (a) only local events can
take place on MH. (b) There is no message arrive or send events
occur during this interval. Hence no any dependency events with
respect to another node are created during this interval.

Disconnection

Disconnection of an MH is a voluntary operation and it may take
arbitrary period of time. At the time of disconnection from MSS1:

(a) MH takes its local checkpoint which is stored at MSS1 as
disconnect_checkpointi which serves request messages for MH to
take checkpoint

(b) Stores its dependency vector Ri at MSS1.

(c) The Computation messages, for MH arriving at MSS1 during
disconnect interval are stored at MSS1 until the end of the interval.

(d) Self identity at its stable storage at MSS1

Reconnection

At the time of reconnection to MSS2 : MH executes a
reconnection protocol. The reconnection protocol sends a
message through MSS2 to MSS1. On receiving the message MSS1
executes the following steps:

(1)If MSS1 had processed request message for MH then
disconnect_checkpointi and the buffered messages are sent to MH.

(2)If no checkpoint request for MH was received by MSS1 during
disconnect interval only buffered messages are sent.

(3)After that MSS1 removes the buffered messages,
disconnect_checkpointi and MH’s dependency vector. When
the data sent by MSS1 arrives at MH, MH executes the following
actions:

(1) If the received data contains disconnect_checkpointi, MH

stores this checkpoint as its local checkpoint and resets all except
the ith component of dependency vector Ri before processing the
messages.

(2) Process all the received buffered messages.

(3)The dependency vector is updated.

Now this reconnect protocol ends and MH makes normal
communication.

MSS1 removes the disconnect_checkpointi at the end of
disconnect interval. In such a way mobility and disconnection of
MH get managed.

V. MINIMAL CHECKPOINTING PROTOCOL
 In this section, we present a nonblocking snapshot collection
protocol for mobile distributed system. The protocol forces a
minimum set of nodes to take local checkpoints. Thus overhead
of checkpoint collection get minimized. After the coordinated
snapshot collection terminates, the nodes that did not participate
in snapshot collection can take their local checkpoints in lazy
phase approach. When a node initiates a request for snapshot
collection to another node then that node takes its local snapshot
and propagating the request to neighbouring nodes. A global
snapshot is collection of all the local nodes which participates for
snapshot initiation. The snapshot thus generated is latest than
each of the snapshot thus collected independently. Thus amount
of lost work during rollback, after the node failure is minimized.
The underlying computation need not have to be suspended
during snapshot collection

A. Data structures
Ri : a Boolean vector Ri of n components. At Pi, the vector
initialized as follows: Ri[i] = 1; Ri[j] = 0 if i � j;

When a node Pi sends a message to Pj it then changes vector Ri .
This tells Pj about the nodes that are dependent on Pi. While
processing a message M Pj extracts Boolean vector M.R from the
message and uses it to update Rj as follows: Rj[k] � Rj[k] OR
M.R[k], where 1 � k � n.

ckpt_num: when the node takes its local checkpoint then this
integer number is increased.

 weight: A nonnegative real variable with maximum value 1 used
to detect the termination of snapshot collection or checkpointing
algorithm.

transmit: a Boolean array of size n maintained by each node in
its stable storage. This array is initialized to all zeros. It is used to
keep the trail of those nodes to which checkpoint requests were
sent by node. If in this array each element has all 0s then
response message is sent to the snapshot initiator with a weight
equal to weight received in the request. If in this array some
elements are put to 1 then for all i such that transmit[i] = 1, a
request is sent to Pi with a non zero segment of weight received
in request message and rest part of weight is sent to initiator with
a response message.

trigger: A set of 2-tuples (init_id, init_ckptnum) maintained by
each node, where init_id indicates the identifier of checkpointing
initiator. Where init_ckptnum shows the checkpoint number of
the initiator node when it took its own local snapshot on initiating
the snapshot collection. trigger is changed for all system
messages and the first computation message that a node sends to
every other node after taking a local snapshot.

ckpt_array: This is an array of n integer maintained at each node,
ckpt_array[i] indicates the ckpt_num of the next message
expected from node Pi .

self_trigger: The trigger tuple of a node receiving computation
message

msg_trigger: Trigger tuple of computation message

get_weight: The weight received by dependent nodes

Fig. 4 Minimal number of Local snapshots and Global recovery line

G1 G2

P

P

P

P

P

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..115599--116633 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.022 Page | 162

forward_weight: The weight sends by the node which further
spread checkpoint request.

B. The Protocol

Checkpoint initiation process
Let Pi be the checkpoint initiator. It takes following action:
(1)It takes a tentative local checkpoint. (2) Increments its
ckpt_num (3) initialized weight to 1 (4) It sets init_id and
init_ckptnum in its trigger tuple (5) It sends checkpoint request
message to all its dependent nodes. The request message now
includes: weight, initiator’s trigger and dependency vector Ri.

Response of a node receiving of checkpoint request
Let node Pi receives checkpoint request.
if (reqst_msg.trigger � Pi.trigger) then
 {
 Pi takes tentative local checkpoint;
 Pi propagates reqst_msg to all the dependent nodes but not
 M.R; // Explained in further Checkpoint…… module //
 Send portion of the received weight with its reqst_msg;
 Update initiator trigger tuple.
 Send response_msg to the initiator.
 }
else
 {
 Pi does not take the local checkpoint
 if (transmit[i] = 0) then
 {
 Pi send response_msg with weight received with
 reqst_msg to initiator.
 }
 else
 {
 Pi send reqst_msg to nodes for which transmit[j] =1
 with portion of weight;
 Pi sends response_msg with remaining weight to initiator.
 }}

Response of a node receiving of computational message
Let a node Pj receives a computation message M from other node
Pi then following action occurs:

If (ckpt_numi � ckpt_array[i]) then
 {
 Pj will not take any checkpoint;
 Restart the computation by processing message M;
 }
 else
 {
 // Pi has already taken a checkpoint before sending M and
 this is the first computation message sent from Pi to Pj.
 M carries a trigger (init_id, init_ckptnum)//
 Set ckpt_array[i] = ckpt_numi ;
 }
 If (msg_trigger = self_trigger) then
 // Pi and Pj has taken checkpoints w.r.t same initiator//
 Update dependency vector Ri[j];
 else
 {
 If (msg_trigger.pid � self_trigger.pid)
 {
 If (Pj had processed a message from node Pk) then
 Return;
 Pj takes tentative checkpoint;
 Set msg_trigger=self_trigger;
 Propagate snapshot request to dependent processes;
 }
 }
 Further Checkpoint request propagation

Let node Pi take checkpoint request. It propagates checkpoint
request to its dependent processes as follows:
Take local checkpoint;
Update ckpt_numi and transmit[i] ;
 Self_trigger=msg_trigger;
 transmit[i] = Ri – M.R;
 for all k dependent nodes set transmit[k]=1
 {
 get_weight = get_weight/2
 forward_weight = get_weight;
// Send following module to dependent nodes //
send(Pi ,request_msg,chkpt_num,self_trigger,forward_weight);
}
Closing Checkpoint collection
When the initiator receives weights from all the response
messages then initiator makes the addition of all the weight when
this addition becomes equal to 1. It decides that all the nodes
involved in snapshot collection have taken local checkpoints.
Then it propagates the commit message to all those nodes. The
previous permanent local checkpoints at these nodes are
discarded. Now if further recovery is required the nodes will
rollback to current checkpoint.

C. Example
Following example clarifies the concepts used in our algorithm
with the help of Fig node P3 initiates snapshot collection by
taking its local checkpoint. The node P2 and P4 shows
dependencies to P3. The broken arrows shows request messages
sent to P2 and P4 to take their snapshots on their timeline. P4 takes
first snapshot and then sends a message M3 to P2. When M3
reaches P2 it is the first message reached at P2 such that
msg_trigger.pid � self_trigger.pid. Hence P2 takes its snapshot
before processing M3. Node P1 takes its local independent
snapshot before sending a message M4 to P2.

The interval number of M4 is greater than the value expected by
P2 from P1 [Fig. 5]. But when M4 reaches P2 it is not the first
computation message received by P2 with a higher interval
number than expected whose msg_trigger.pid is different from
P2’s self_trigger.pid. So a snapshot is not taken because it will
create inconsistency: The reception of M3 will be recorded if P2
takes a snapshot just before it processes M4, but the transmission

P1

P2

P3

P4

M2 M3

M1

M4

Checkpoint:

Computational message
Request Message

Fig. 5 Global Snapshot collection

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..115599--116633 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.022 Page | 163

of M3 will not have been recorded by P4 and now M3 becomes
orphan. Also here msg_trigger of M3 = self_trigger of request
message to P2 . Hence no need to take further checkpoint

VI. CONCLUSIONS
An efficient recovery mechanism for mobile computing system is
required to maintain the continuity of computation in the event of
node failures. In this paper we have proposed low-overhead
checkpoint collection protocol to meet requirements of node
mobility, energy conservation and low communication bandwidth.
Dependency information among nodes is used to advance the
global checkpoint of the system in coordinated manner. The
proposed snapshot collection protocol is Non-Blocking i.e. the
participating node does not require to stop their computation
during snapshot collection. What actions are carried out when a
MH disconnects from MSS and its reconnection to MSS are
presented in our paper.

REFERENCES

[1]. K.M. Chandy and L.Lamport. “Distributed Snapshots:
Determining Global States of Distributed Systems”
ACM Transactions Computer systems vol. 3, no.1.pp.63-
75, Feb.1985

[2]. Prakash R. and Singhal M., “Low-Cost Checkpointing
and Failure Recovery in Mobile Computing
Systems” ,IEEE Transaction On Parallel and Distributed
Systems, vol. 7, no. 10, pp. 1035-1048, October1996.

[3]. Guohong Cao and Mukesh Singhal, “On Coordinated
Checkpointing in Distributed Systems” IEEE Transaction
On Parallel and Distributed Systems, vol. 9, no. 12, pp.
1213-1224, December 1998.

[4]. Guohong Cao and Mukesh Singhal, “Mutable
Checkpoints: A New Checkpointing Approach for
Mobile Computing Systems”, IEEE Transaction On
Parallel and Distributed Systems, vol. 12, no. 2, pp. 157-
171, February 2001.

[5]. Weigang Ni, Susan V. Vrbsky and Sibabrata Ray
“Pitfalls in Distributed Non blocking Checkpointing”,
University of Alabama

[6]. Prakash R. and Singhal M. “Maximal Global Snapshot
with concurrent initiators,” Proc. Sixth IEEE Symp.
Parallel and Distributed Processing, pp.344-351,
Oct.1994.

[7]. Koo. R. and S.Toueg. “Checkpointing and Rollback-
Recovery for Distributed Systems” .IEEE Transactions
on Software Engineering, SE-13(1):23-31, January 1987.

[8]. Bidyut Gupta, S.Rahimi and Z.Lui. “A New High
Performance Checkpointing Approach for Mobile
Computing Systems”. IJCSNS International Journal of
Computer Science and Network Security, Vol.6 No.5B,
May 2006.

[9]. Acharya A. and Badrinath B. R., “Checkpointing
Distributed Applications on Mobile Computers,”
Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems, pp. 73-80,
September,1994.

[10]. Ch.D.V. Subba Rao and M.M.Naidu. “A New, Efficient
Coordinated Checkpointing Protocol Combined with
Selective Sender-Based Message Logging”.

[11]. Nuno Neves and W. Kent Fuchs. “Adaptive Recovery for
Mobile Environments”,in Proc.IEEE High-Assurance
Systems Engineering Workshop,October 21-
22,1996,pp.134-141.

[12]. Y.Manable. “A Distributed Consistent Global Checkpoint
Algorithm With minimum number of Checkpoints”.
Technical Report of IEICE, COMP97-6(April1997).

[13]. J.L.Kim and T.Park. “An efficient protocol for
checkpointing recovery in Distributed Systems” IEEE
Transaction On Parallel and Distributed
Systems,4(8):pp.955-960, Aug 1993.

[14]. Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B.,
“Survey of Rollback-Recovery Protocols in Message-
Passing Systems,” ACM Computing Surveys, vol. 34, no.
3, pp. 375-408, 2002.

[15]. S.Venkatesan and T.T.-Y.Juang , “ Low Overhead
Optimistic Crash Recovery:”, Preliminary version
appears in Proc. 11th Int’l Conf. Distributed Computing
Systems as “Crash Recovery with Little
Overhead,”pp.454- 461, 1991

